Heuristic method to determine lucky k-polynomials for k-colorable graphs

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coloring k-colorable graphs using smaller palettes

We obtain the following new coloring results: A 3-colorable graph on n vertices with maximum degree can be colored, in polynomial time, us

متن کامل

Almost All k-Colorable Graphs are Easy to Color

We describe a simple and eecient heuristic algorithm for the graph coloring problem and show that for all k 1, it nds an optimal coloring for almost all k-colorable graphs. We also show that an algorithm proposed by Br elaz and justiied on experimental grounds optimally colors almost all k-colorable graphs. EEcient implementations of both algorithms are given. The rst one runs in O(n+m log k) t...

متن کامل

On Approximation Algorithms for Coloring k-Colorable Graphs

Karger, Motwani and Sudan presented a graph coloring algorithm based on semidefinite programming, which colors any k-colorable graph with maximum degree ∆ using Õ(∆1−2/k) colors. This algorithm leads to an algorithm for k-colorable graph using Õ(n1−3/(k+1)) colors. This improved Wigderson’s algorithm, which uses O(n1−1/(k−1)) colors, containing as a subroutine an algorithm using (∆ + 1) colors ...

متن کامل

Coloring Sparse Random k-Colorable Graphs in Polynomial Expected Time

Feige and Kilian [5] showed that finding reasonable approximative solutions to the coloring problem on graphs is hard. This motivates the quest for algorithms that either solve the problem in most but not all cases, but are of polynomial time complexity, or that give a correct solution on all input graphs while guaranteeing a polynomial running time on average only. An algorithm of the first ki...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Universitatis Sapientiae, Informatica

سال: 2019

ISSN: 2066-7760

DOI: 10.2478/ausi-2019-0014